
(   3) محاضرة 

2- Principle of Minimum Variance Unbiased Estimation 

Among all estimators of θ that are unbiased, choose the one 
that has minimum variance. The resulting is called the 
minimum variance unbiased estimator (MVUE) of θ. I The most 
important result of this type for our purposes concerns 
estimating the mean µ of normal distribution.  

Theorem : Let X1, ..., Xn be a random sample from a normal 
distribution with parameters µ and σ 2 . Then the estimator µˆ 
= X is the MVUE for ¯ µ. I In some situations, it is possible to 
obtain an estimator with small bias that would be preferred to 
the best unbiased estimator. 

3- EFFICIENCY:  

An estimator is said to be efficient if in the class of unbiased 
estimators it has minimum variance. 

Example: Suppose we have some prior knowledge that the 
population from which we are about to sample is normal. The 
mean of this population is however unknown to us. Because it 
is normal we know that and mediansample are unbiased 

  



However, consider their variances 

 

Clearly, is the more efficient since it has the smaller variance. 

4 - SUFFICIENCY:  

We say that an estimator is sufficient if it uses all the sample 
information. The median, because it considers only rank, is not 
sufficient. The sample mean considers each member of the 
sample as well as its size, so is a sufficient statistic. Or, given 
the sample mean, the distribution of no other statistic can 
contribute more information about the population mean. We 
use the factorization theorem to prove sufficiency. If the 
likelihood function of a random variable can be factored into a 
part which has as its arguments only the statistic and the 
population parameter and a part which involves only the 
sample data, the statistic is sufficient.  

5-  Consistency 

One desirable property of estimators is consistency. If we 
collect a large number of observations, we hope we have a lot 
of information about any unknown parameter θ, and thus we 



hope we can construct an estimator with a very small MSE. 
We call an estimator consistent if limn MSE(θ) = 0 which 
means that as the number of observations increase the MSE 
descends to 0. In our first example, we found if X1, . . . , Xn ∼ 
N(θ, 1), then the MSE of ¯x is 1/n. Since limn(1/n) = 0, ¯x is a 
consistent estimator of θ. Remark: To be specific we may call 
this “MSE-consistant”. There are other type of consistancy 
definitions that, say, look at the probability of the errors. They 
work better when the estimator do not have a variance. If X1, . 
. . , Xn ∼ Uni(0, θ), then δ(x) = ¯x is not a consistent estimator 
of θ. The MSE is (3n + 1)θ 2/(12n) and limn (3n + 1)θ 2 12n 
= θ 2 4 6= 0 so even if we had an extremely large number of 
observations, ¯x would probably not be close to θ. Our 
adjusted estimator δ(x) = 2¯x is consistent, however. We found 
the MSE to be θ 2/3n, which tends to 0 as n tends to infinity. 
This doesn’t necessarily mean it is the optimal estimator (in 
fact, there are other consistent estimators with MUCH smaller 
MSE), but at least with large samples it will get us close to θ. 

 
 


